Published in

American Association for Cancer Research, Cancer Research, 3(81), p. 685-697, 2021

DOI: 10.1158/0008-5472.can-20-1818

Links

Tools

Export citation

Search in Google Scholar

Cyclophosphamide and vinorelbine activate stem-like CD8+ T cells and improve anti-PD-1 efficacy in triple-negative breast cancer

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Checkpoint inhibitors (CI) instigate anticancer immunity in many neoplastic diseases, albeit only in a fraction of patients. The clinical success of cyclophosphamide (C)-based haploidentical stem-cell transplants indicates that this drug may re-orchestrate the immune system. Using models of triple-negative breast cancer (TNBC) with different intratumoral immune contexture, we demonstrate that a combinatorial therapy of intermittent C, CI, and vinorelbine activates antigen-presenting cells (APC), and abrogates local and metastatic tumor growth by a T-cell–related effect. Single-cell transcriptome analysis of >50,000 intratumoral immune cells after therapy treatment showed a gene signature suggestive of a change resulting from exposure to a mitogen, ligand, or antigen for which it is specific, as well as APC-to-T-cell adhesion. This transcriptional program also increased intratumoral Tcf1+ stem-like CD8+ T cells and altered the balance between terminally and progenitor-exhausted T cells favoring the latter. Overall, our data support the clinical investigation of this therapy in TNBC. Significance: A combinatorial therapy in mouse models of breast cancer increases checkpoint inhibition by activating antigen-presenting cells, enhancing intratumoral Tcf1+ stem-like CD8+ T cells, and increasing progenitor exhausted CD8+ T cells.