Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Plants, 12(9), p. 1648, 2020

DOI: 10.3390/plants9121648

Links

Tools

Export citation

Search in Google Scholar

Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Indanols are a family of chemical compounds that have been widely studied due to their broad range of biological activity. They are also important intermediates used as synthetic precursors to other products with important applications in pharmacology. Enantiomerically pure chloroindanol derivatives exhibiting antifungal activity against the phytopathogenic fungus Botrytis cinerea were prepared using biocatalytic methods. As a result of the biotransformation of racemic 6-chloroindanol (1) and 5-chloroindanol (2) by the fungus B. cinerea, the compounds anti-(+)-6-chloroindan-1,2-diol (anti-(+)-7), anti-(+)-5-chloroindan-1,3-diol (anti-(+)-8), syn-(+)-5-chloroindan-1,3-diol (syn-(+)-8), syn-(-)-5-chloroindan-1,3-diol (syn-(-)-8), and anti-(+)-5-chloroindan-1,2-diol (anti-(+)-9) were isolated for the first time. These products were characterized by spectroscopic techniques and their enantiomeric excesses studied by chromatographic techniques. The results obtained in the biotransformation seem to suggest that the fungus B. cinerea uses oxidation reactions as a detoxification mechanism.