Published in

De Gruyter Open, Nanophotonics, 16(9), p. 4799-4807, 2020

DOI: 10.1515/nanoph-2020-0482

Links

Tools

Export citation

Search in Google Scholar

Wide-gap photoluminescence control of quantum dots through atomic interdiffusion and bandgap renormalization

Journal article published in 2020 by Kyoung-Duck Park ORCID, Minh Tan Man, Deok-Yong Cho, Hong Seok Lee ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Bandgap and photoluminescence (PL) energy control of epitaxially grown II–VI quantum dots (QDs) are highly desirable for applications in optoelectronic devices, yet little work has been reported. Here, we present a wide tunability of PL emission for CdTe/ZnTe QDs through an impurity-free vacancy disordering method. To induce compressive stress at the dielectric layer/ZnTe interface, a SiO2 film is deposited onto the samples, followed by rapid thermal annealing to induce atomic interdiffusion. After the heat treatment, the PL spectra of the intermixed QDs show pronounced blueshifts in peak energy as large as ∼200 meV because of the reduced bandgap renormalization and decreased quantum confinement effects in addition to the dominant atomic interdiffusion effect. In addition, we present a thorough investigation on the modified physical properties of the intermixed QDs, including their lattice structure, thermal escape energy, and carrier dynamics, through quantitative X-ray and optical characterizations.