Published in

The Electrochemical Society, Journal of The Electrochemical Society, 16(167), p. 161504, 2020

DOI: 10.1149/1945-7111/abcc36

Links

Tools

Export citation

Search in Google Scholar

Local Inhibition by 2-mercaptobenzothiazole of Early Stage Intergranular Corrosion of Copper

Journal article published in 2020 by Sagar B. Sharma ORCID, Vincent Maurice ORCID, Lorena H. Klein, Philippe Marcus ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Corrosion inhibition by 2-mercaptobenzothiazole (MBT) at the surface termination of various types of grain boundaries (GBs) was studied at the nanometer scale on microcrystalline copper in HCl acid solution using in situ electrochemical scanning tunneling microscopy (ECSTM). Macroscopic electrochemical analysis by cyclic voltammetry showed highly effective inhibition of Cu(I) active dissolution blocked by MBT pre-adsorption in a potential range of 0.15–0.2 V. ECSTM analysis of the initial stages of intergranular corrosion confirmed the mitigation of net intergranular dissolution by the pre-adsorbed MBT surface layer but also revealed the local accumulation of reaction products in the GB regions. For Coincidence Site Lattice boundaries other than coherent twins, intergranular dissolution, mitigated by the pre-adsorbed MBT layer, and protection by intergranular formation of a film of reaction products were observed. For random GBs, protection by reaction products was dominant, in agreement with their more reactive intrinsic character, generating more Cu(I) ions under anodic polarization and thus promoting the formation of a protective film of reaction products. Coherent twins did not show preferential intergranular reactivity compared to adjacent grains, indicating equally strong efficiency than on grains. These results bring new insight on how inhibition operates locally at various types of GBs.