Published in

MDPI, Catalysts, 12(10), p. 1390, 2020

DOI: 10.3390/catal10121390

Links

Tools

Export citation

Search in Google Scholar

Soot Combustion over Niobium-Doped Cryptomelane (K-OMS-2) Nanorods—Redox State of Manganese and the Lattice Strain Control the Catalysts Performance

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A series of Nb-doped (0–23 wt%) cryptomelane catalyst (Nb-K-OMS-2) was synthesized and thoroughly characterized by XRD, TEM/EDX, XRF, XPS, XAS, UV-Vis, and Raman techniques corroborated by the work function measurements. The obtained catalysts were tested for soot oxidation (Printex U) in model tight and loose contact modes. It was shown that the catalytic properties of the Nb-K-OMS-2 are controlled by the amount of Nb dopant in a strongly non-monotonous way. The introduction of niobium gives rise to the strain in the cryptomelane lattice, accompanied by significant Mn+3/Mn+4 ratio variations and concomitant work function changes. The isotopic exchange experiments revealed that the catalytic activity of the Nb-OMS-2 catalysts in soot combustion proceeds via the pathways, where both the activated suprafacial 18O and the surface 16O2− species participate together in the reaction. The niobium doping level controls the non-monotonous changes of the catalyst work function and the lattice strain, and variations of these parameters correlate well with the observed deSoot activity. To our best knowledge, the role of the lattice strain of the cryptomelane catalysts was documented for the first time in this study.