Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Data, 1(7), 2020

DOI: 10.1038/s41597-020-00761-2

Links

Tools

Export citation

Search in Google Scholar

Mining potentially actionable kinase gene fusions in cancer cell lines with the KuNG FU database

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractInhibition of kinase gene fusions (KGFs) has proven successful in cancer treatment and continues to represent an attractive research area, due to kinase druggability and clinical validation. Indeed, literature and public databases report a remarkable number of KGFs as potential drug targets, often identified by in vitro characterization of tumor cell line models and confirmed also in clinical samples. However, KGF molecular and experimental information can sometimes be sparse and partially overlapping, suggesting the need for a specific annotation database of KGFs, conveniently condensing all the molecular details that can support targeted drug development pipelines and diagnostic approaches. Here, we describe KuNG FU (KiNase Gene FUsion), a manually curated database collecting detailed annotations on KGFs that were identified and experimentally validated in human cancer cell lines from multiple sources, exclusively focusing on in-frame KGF events retaining an intact kinase domain, representing potentially active driver kinase targets. To our knowledge, KuNG FU represents to date the largest freely accessible homogeneous and curated database of kinase gene fusions in cell line models.