Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Sensors, 23(20), p. 6799, 2020

DOI: 10.3390/s20236799

Links

Tools

Export citation

Search in Google Scholar

Improving the Voltammetric Determination of Hg(II): A Comparison Between Ligand-Modified Glassy Carbon and Electrochemically Reduced Graphene Oxide Electrodes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A new thiosemicarbazone ligand was immobilized through a Cu(I)-catalyzed click reaction on the surface of glassy carbon (GC) and electrochemically reduced graphene oxide (GC-ERGO) electrodes grafted with phenylethynyl groups. Using the accumulation at open circuit followed by anodic stripping voltammetry, the modified electrodes showed a significant selectivity and sensibility for Hg(II) ions. A detection limit of 7 nM was achieved with the GC modified electrodes. Remarkably, GC-ERGO modified electrodes showed a significantly improved detection limit (0.8 nM), sensitivity, and linear range, which we attribute to an increased number of surface binding sites and better electron transfer properties. Both GC and GC-ERGO modified electrodes proved their applicability for the analysis of real water samples.