Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-19908-1

Links

Tools

Export citation

Search in Google Scholar

Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe pairing mechanism in cuprates remains as one of the most challenging issues in condensed matter physics. Recently, superconductivity was discovered in thin films of the infinite-layer nickelate Nd1-xSrxNiO2 (x = 0.12–0.25) which is believed to have the similar 3d9 orbital electrons as that in cuprates. Here we report single-particle tunneling measurements on the superconducting nickelate thin films. We find predominantly two types of tunneling spectra, one shows a V-shape feature which can be fitted well by a d-wave gap function with gap maximum of about 3.9 meV, another one exhibits a full gap of about 2.35 meV. Some spectra demonstrate mixed contributions of these two components. Combining with theoretical calculations, we attribute the d-wave gap to the pairing potential of the ${\mathrm{Ni - }}3d_{x^2 - y^2}$ Ni- 3 d x 2 − y 2 orbital. Several possible reasons are given for explaining the full gap feature. Our results indicate both similarities and distinctions between the newly found Ni-based superconductors and cuprates.