Dissemin is shutting down on January 1st, 2025

Published in

Cell Press, Trends in Genetics, 8(25), p. 344-350, 2009

DOI: 10.1016/j.tig.2009.05.007

Links

Tools

Export citation

Search in Google Scholar

Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts

Journal article published in 2009 by Sandra Duharcourt, Gersende Lepere, Eric Meyer
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Several classes of non-protein-coding RNAs have recently been identified as epigenetic regulators of developmental genome rearrangements in ciliates, providing an interesting insight into the role of genome-wide transcription. In these unicellular eukaryotes, extensive rearrangements of the germline genome occur during the development of a new somatic macronucleus from the germline micronucleus. Rearrangement patterns are not dictated by the germline sequence, but reproduce the pre-existing rearrangements of the maternal somatic genome, implying a homology-dependent global comparison of germline and somatic genomes. We review recent evidence showing that this is achieved by a natural genomic subtraction, computed by pairing interactions between meiosis-specific, germline scnRNAs (small RNAs that resemble metazoan piRNAs) and longer non-coding transcripts from the somatic genome. We focus on current models for the RNA-based mechanisms enabling the cell to recognize the germline sequences to be eliminated from the somatic genome and to maintain an epigenetic memory of rearrangement patterns across sexual generations.