Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-77506-z

Links

Tools

Export citation

Search in Google Scholar

An epigenome-wide association study of metabolic syndrome and its components

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe role of metabolic syndrome (MetS) as a preceding metabolic state for type 2 diabetes and cardiovascular disease is widely recognised. To accumulate knowledge of the pathological mechanisms behind the condition at the methylation level, we conducted an epigenome-wide association study (EWAS) of MetS and its components, testing 1187 individuals of European ancestry for approximately 470 000 methylation sites throughout the genome. Methylation site cg19693031 in gene TXNIP —previously associated with type 2 diabetes, glucose and lipid metabolism, associated with fasting glucose level (P = 1.80 × 10−8). Cg06500161 in gene ABCG1 associated both with serum triglycerides (P = 5.36 × 10−9) and waist circumference (P = 5.21 × 10−9). The previously identified type 2 diabetes–associated locus cg08309687 in chromosome 21 associated with waist circumference for the first time (P = 2.24 × 10−7). Furthermore, a novel HDL association with cg17901584 in chromosome 1 was identified (P = 7.81 × 10−8). Our study supports previous genetic studies of MetS, finding that lipid metabolism plays a key role in pathology of the syndrome. We provide evidence regarding a close interplay with glucose metabolism. Finally, we suggest that in attempts to identify methylation loci linking separate MetS components, cg19693031 appears to represent a strong candidate.