Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 49(117), p. 31198-31207, 2020

DOI: 10.1073/pnas.1922342117

Links

Tools

Export citation

Search in Google Scholar

ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Mutations in ATP13A2 cause a spectrum of related neurodegenerative disorders. ATP13A2 is a lysosomal exporter of polyamines that contributes to lysosomal health and controls cellular polyamine content. Conversely, loss of ATP13A2 leads to lysosomal dysfunction, a hallmark of neurodegeneration. Here, we show that polyamines transported by ATP13A2 provide cellular protection by lowering reactive oxygen species (ROS), which may relate to the antioxidant properties of polyamines. Consequently, dysfunctional ATP13A2 sensitizes cells to oxidative stress, which impairs mitochondria, and induces toxicity and cell death. ATP13A2-mediated polyamine transport represents a conserved pathway that protects against mitochondrial oxidative stress. The combined protective impact of ATP13A2 on lysosomal health and mitochondrial oxidative stress may explain why ATP13A2 exerts potent neuroprotective effects.