Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-77261-1

Links

Tools

Export citation

Search in Google Scholar

Nucleotide-binding sites can enhance N-acylation of nearby protein lysine residues

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractAcyl-CoAs are reactive metabolites that can non-enzymatically S-acylate and N-acylate protein cysteine and lysine residues, respectively. N-acylation is irreversible and enhanced if a nearby cysteine residue undergoes an initial reversible S-acylation, as proximity leads to rapid S → N-transfer of the acyl moiety. We reasoned that protein-bound acyl-CoA could also facilitate S → N-transfer of acyl groups to proximal lysine residues. Furthermore, as CoA contains an ADP backbone this may extend beyond CoA-binding sites and include abundant Rossmann-fold motifs that bind the ADP moiety of NADH, NADPH, FADH and ATP. Here, we show that excess nucleotides decrease protein lysine N-acetylation in vitro. Furthermore, by generating modelled structures of proteins N-acetylated in mouse liver, we show that proximity to a nucleotide-binding site increases the risk of N-acetylation and identify where nucleotide binding could enhance N-acylation in vivo. Finally, using glutamate dehydrogenase as a case study, we observe increased in vitro lysine N-malonylation by malonyl-CoA near nucleotide-binding sites which overlaps with in vivo N-acetylation and N-succinylation. Furthermore, excess NADPH, GTP and ADP greatly diminish N-malonylation near their nucleotide-binding sites, but not at distant lysine residues. Thus, lysine N-acylation by acyl-CoAs is enhanced by nucleotide-binding sites and may contribute to higher stoichiometry protein N-acylation in vivo.