Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Coatings, 11(10), p. 1105, 2020

DOI: 10.3390/coatings10111105

Links

Tools

Export citation

Search in Google Scholar

Borate and Silicate Bioactive Glass Coatings Prepared by Nanosecond Pulsed Laser Deposition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Silicate (13-93) and borate (13-93-B3) bioactive glass coatings were successfully deposited on titanium using the nanosecond Pulsed Laser Deposition technique. The coatings’ microstructural characteristics, compositions and morphologies were examined by a number of physico-chemical techniques. The deposited coatings retain the same functional groups of the targets, are a few microns thick, amorphous, compact and crack free. Their surface is characterized by the presence of micrometric and nanometric particles. The surface topography, investigated by Atomic Force Microscopy, is characterized by spherical or ellipsoidal particles of the 0.2–3 μm size range for the 13-93 silicate bioactive glass film and of the 0.1–1 µm range for the 13-93-B3 borate bioactive glass coating. Equine adipose tissue-derived mesenchymal stem cells (ADMSCs) were applied for biological tests and the osteogenic differentiation activity of cells on the deposited coatings was studied after ADMSCs growth in osteogenic medium and staining with Alizarin Red. Cytocompatibility and osteogenic differentiation tests have shown that thin films retain the biocompatibility properties of the target silicate and borate glass, respectively. On the other hand, no antibacterial activity of the borate glass films was observed, suggesting that ion doping is advisable to inhibit bacterial growth on the surface of borate glass thin films.