Dissemin is shutting down on January 1st, 2025

Published in

The Royal Society, Royal Society Open Science, 11(7), p. 200909, 2020

DOI: 10.1098/rsos.200909

Links

Tools

Export citation

Search in Google Scholar

Robust estimates of the true (population) infection rate for COVID-19: a backcasting approach

Journal article published in 2020 by Steven J. Phipps ORCID, R. Quentin Grafton ORCID, Tom Kompas ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Differences in COVID-19 testing and tracing across countries, as well as changes in testing within each country over time, make it difficult to estimate the true (population) infection rate based on the confirmed number of cases obtained through RNA viral testing. We applied a backcasting approach to estimate a distribution for the true (population) cumulative number of infections (infected and recovered) for 15 developed countries. Our sample comprised countries with similar levels of medical care and with populations that have similar age distributions. Monte Carlo methods were used to robustly sample parameter uncertainty. We found a strong and statistically significant negative relationship between the proportion of the population who test positive and the implied true detection rate. Despite an overall improvement in detection rates as the pandemic has progressed, our estimates showed that, as at 31 August 2020, the true number of people to have been infected across our sample of 15 countries was 6.2 (95% CI: 4.3–10.9) times greater than the reported number of cases. In individual countries, the true number of cases exceeded the reported figure by factors that range from 2.6 (95% CI: 1.8–4.5) for South Korea to 17.5 (95% CI: 12.2–30.7) for Italy.