Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 46(117), p. 29166-29177, 2020

DOI: 10.1073/pnas.2012728117

Links

Tools

Export citation

Search in Google Scholar

High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Lignin is a defining polymer of vascular plants and of great physiological, ecological, and economical importance. Yet, its polymerization in the cell wall is still not understood. Lignin polymerizing enzymes, laccases and peroxidases, exist in vast numbers in plant genomes. By focusing on a specific lignin structure, the ring-like Casparian strips (CSs), we reduced candidate numbers and abolished essentially all laccases with detectable endodermal expression. Yet, not even slight defects in CS formation were detected. By contrast, a quintuple peroxidase mutant displayed a complete absence of CS. Our findings suggest that cells lignify differently depending on whether lignin is localized or ubiquitous and whether cells stay alive during and after lignification, as well as the composition of the cell wall.