Published in

The Royal Society, Biology Letters, 11(16), p. 20200456, 2020

DOI: 10.1098/rsbl.2020.0456

Links

Tools

Export citation

Search in Google Scholar

Leaf hydraulic safety margin and safety–efficiency trade-off across angiosperm woody species

Journal article published in 2020 by Chao-Long Yan, Ming-Yuan Ni, Kun-Fang Cao, Shi-Dan Zhu ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Leaf hydraulic conductance and the vulnerability to water deficits have profound effects on plant distribution and mortality. In this study, we compiled a leaf hydraulic trait dataset with 311 species-at-site combinations from biomes worldwide. These traits included maximum leaf hydraulic conductance ( K leaf ), water potential at 50% loss of K leaf (P50 leaf ), and minimum leaf water potential ( Ψ min ). Leaf hydraulic safety margin (HSM leaf ) was calculated as the difference between Ψ min and P50 leaf . Our results indicated that 70% of the studied species had a narrow HSM leaf (less than 1 MPa), which was consistent with the global pattern of stem hydraulic safety margin. There was a positive relationship between HSM leaf and aridity index (the ratio of mean annual precipitation to potential evapotranspiration), as species from humid sites tended to have larger HSM leaf . We found a significant relationship between K leaf and P50 leaf across global angiosperm woody species and within each of the different plant groups. This global analysis of leaf hydraulic traits improves our understanding of plant hydraulic response to environmental change.