Published in

Springer Verlag, Monatshefte für Mathematik, 2020

DOI: 10.1007/s00605-020-01483-8



Export citation

Search in Google Scholar

Hypocoercivity and sub-exponential local equilibria

Journal article published in 2020 by E. Bouin, J. Dolbeault ORCID, L. Lafleche, C. Schmeiser
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO


Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when local equilibria have a sub-exponential decay. By Nash type estimates, global rates of decay are obtained, which reflect the behavior of the heat equation obtained in the diffusion limit. The method applies to Fokker-Planck and scattering collision operators. The main tools are a weighted Poincaré inequality (in the Fokker-Planck case) and norms with various weights. The advantage of weighted Poincaré inequalities compared to the more classical weak Poincaré inequalities is that the description of the convergence rates to the local equilibrium does not require extra regularity assumptions to cover the transition from super-exponential and exponential local equilibria to sub-exponential local equilibria.