Published in

Nature Research, Scientific Data, 1(7), 2020

DOI: 10.1038/s41597-020-00727-4

Links

Tools

Export citation

Search in Google Scholar

SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rules

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractWe have made available a database of over 1 billion compounds predicted to be easily synthesizable, called Synthetically Accessible Virtual Inventory (SAVI). They have been created by a set of transforms based on an adaptation and extension of the CHMTRN/PATRAN programming languages describing chemical synthesis expert knowledge, which originally stem from the LHASA project. The chemoinformatics toolkit CACTVS was used to apply a total of 53 transforms to about 150,000 readily available building blocks (enamine.net). Only single-step, two-reactant syntheses were calculated for this database even though the technology can execute multi-step reactions. The possibility to incorporate scoring systems in CHMTRN allowed us to subdivide the database of 1.75 billion compounds in sets according to their predicted synthesizability, with the most-synthesizable class comprising 1.09 billion synthetic products. Properties calculated for all SAVI products show that the database should be well-suited for drug discovery. It is being made publicly available for free download from https://doi.org/10.35115/37n9-5738.