Published in

Springer, Applied Mathematics and Mechanics, 2(42), p. 183-208, 2020

DOI: 10.1007/s10483-021-2673-9

Links

Tools

Export citation

Search in Google Scholar

Analytical solution for the stress field of hierarchical defects: multiscale framework and applications

Journal article published in 2020 by Baijian Wu, Sheng Zhou, Zhaoxia Li
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractHierarchical defects are defined as adjacent defects at different length scales. Involved are the two scales where the stress field distribution is interrelated. Based on the complex variable method and conformal mapping, a multiscale framework for solving the problems of hierarchical defects is formulated. The separated representations of mapping function, the governing equations of potentials, and the stress field are subsequently obtained. The proposed multiscale framework can be used to solve a variety of simplified engineering problems. The case in point is the analytical solution of a macroscopic elliptic hole with a microscopic circular edge defect. The results indicate that the microscopic defect aggregates the stress concentration on the macroscopic defect and likely leads to global propagation and rupture. Multiple micro-defects have interactive effects on the distribution of the stress field. The level of stress concentration may be reduced by the coalescence of micro-defects. This work provides a unified method to analytically investigate the influence of edge micro-defects within the scope of multiscale hierarchy. The formulated multiscale approach can also be potentially applied to materials with hierarchical defects, such as additive manufacturing and bio-inspired materials.