Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 45(117), p. 27820-27824, 2020

DOI: 10.1073/pnas.2013169117

Links

Tools

Export citation

Search in Google Scholar

Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Surface features of a virus are very important in determining its virility. For example, the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the ACE2 receptor site of the host cell with a much stronger affinity than did the original SARS virus. Thus, it is clearly important to understand the virion surface structure. To that end, the present paper combines the spatial resolution of atomic force microscopy and the spectral resolution of coherent Raman spectroscopy. This combination of tip-enhanced microscopy using femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman scattering (FAST CARS) with enhanced resolution (FASTER CARS) allows us to map a single virus particle with nanometer resolution and chemical specificity.