Published in

MDPI, Sustainability, 22(12), p. 9336, 2020

DOI: 10.3390/su12229336

Links

Tools

Export citation

Search in Google Scholar

Increased (Antibiotic-Resistant) Pathogen Indicator Organism Removal during (Hyper-)Thermophilic Anaerobic Digestion of Concentrated Black Water for Safe Nutrient Recovery

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Source separated toilet water is a valuable resource for energy and fertilizers as it has a high concentration of organics and nutrients, which can be reused in agriculture. Recovery of nutrients such as nitrogen, phosphorous, and potassium (NPK) decreases the dependency on energy-intensive processes or processes that rely on depleting natural resources. In new sanitation systems, concentrated black water (BW) is obtained by source-separated collection of toilet water. BW-derived products are often associated with safety issues, amongst which pathogens and antibiotic-resistant pathogens. This study presents results showing that thermophilic (55–60 °C) and hyperthermophilic (70 °C) anaerobic treatments had higher (antibiotic-resistant) culturable pathogen indicators removal than mesophilic anaerobic treatment. Hyperthermophilic and thermophilic anaerobic treatment successfully removed Escherichia coli and extended-spectrum β-lactamases producing E. coli from source-separated vacuum collected BW at retention times of 6–11 days and reached significantly higher removal rates than mesophilic (35 °C) anaerobic treatment (p < 0.05). The difference between thermophilic and hyperthermophilic treatment was insignificant, which justifies operation at 55 °C rather than 70 °C. This study is the first to quantify (antibiotic-resistant) E. coli in concentrated BW (10–40 gCOD/L) and to show that both thermophilic and hyperthermophilic anaerobic treatment can adequately remove these pathogen indicators.