Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Nutrients, 11(12), p. 3424, 2020

DOI: 10.3390/nu12113424

Links

Tools

Export citation

Search in Google Scholar

Dietary Patterns and Their Association with Body Composition and Cardiometabolic Markers in Children and Adolescents: Genobox Cohort

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Diet is a key factor for obesity development; however, limited data are available on dietary cluster analysis in children with obesity. We aimed to assess the associations between dietary patterns and obesity and several cardiometabolic markers. Anthropometry, bioelectrical impedance, blood pressure and plasma biomarkers of oxidative stress, inflammation and endothelial damage were determined in 674 Caucasian children, aged 5–16, with normal or excess weight. Using a food frequency questionnaire and cluster analysis, two consistent dietary patterns were shown, labeled as health conscious (HC) and sweet and processed (SP). The HC pattern included a greater proportion of participants with overweight/obesity than the SP cluster (80.1% vs. 63.8%). However, children with obesity within the HC cluster, showed less abdominal fat, through waist to hip (0.93 vs. 0.94) and waist to height (0.61 vs. 0.63) indexes (p < 0.01). Univariate general models showed several additional differences in cardiometabolic risk biomarkers in the global and stratified analyses, with a healthier profile being observed mainly in the HC cluster. However, multivariate models questioned these findings and pointed out the need for further studies in this field. Anyhow, our findings support the benefits of a healthy diet and highlight the importance of dietary patterns in the cardiometabolic risk assessment of children with overweight/obesity, beyond weight control.