Published in

Springer, Genetic Resources and Crop Evolution, 3(68), p. 1103-1115, 2020

DOI: 10.1007/s10722-020-01052-w

Links

Tools

Export citation

Search in Google Scholar

Construction of a new plant expression vector and the development of maize germplasm expressing the Aspergillus ficuum phytase gene PhyA2

Journal article published in 2020 by Peng Jiao, Wen-Ya Yuan, Han-Dan Zhao, Jing Qu, Pi-Wu Wang, Shu-Yan Guan, Yi-Yong Ma
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPhytases, which belong to a special category of orthophosphoric monoester phosphohydrolases, degrade inositol hexaphosphate to produce lower-grade inositol phosphate derivatives and inorganic phosphate. Thus, phytases may improve phosphorus utilization, eliminate the anti-nutrient properties of phytic acid, and mitigate environmental pollution due to phosphorus contamination. In this study, we constructed a new root-specific expression vector by inserting the Aspergillus ficuum phytase gene PhyA2 into pCAMBIA3301-ZmGLU1P-Nos. The subsequent molecular analysis confirmed that six T4 generation transgenic plants carried and expressed PhyA2. A quantitative real-time PCR analysis indicated PhyA2 was highly expressed in the transgenic roots. Additionally, the phytase activity was 10.9-fold higher in the transgenic roots (peak activity of 5.432 U/g) than in the control roots. Moreover, compared with the control rhizosphere, the organic phosphorus content in the rhizosphere of the transgenic plants decreased significantly (by up to 5.21 mg/kg). An agronomic trait analysis indicated that PhyA2 expression can increase maize seed weight by up to 25.8 g. Therefore, the integration of PhyA2 into the maize genome can enhance the ability of maize plants to use the phosphorus compounds in soil, while also improving the plant growth status and increasing the seed yield.