Published in

BMJ Publishing Group, Journal for ImmunoTherapy of Cancer, Suppl 3(8), p. A470-A470, 2020

DOI: 10.1136/jitc-2020-sitc2020.0444

Links

Tools

Export citation

Search in Google Scholar

444 MHC-I skewing in mutant calreticulin-positive myeloproliferative neoplasms is countered by heteroclitic peptide cancer vaccination

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BackgroundThe majority of JAK2V617F-negative myeloproliferative neoplasms (MPN) have disease-initiating frameshift mutations in calreticulin (CALR) resulting in a common novel C-terminal mutant fragment (CALRMUT), representing an attractive source of neoantigens for cancer vaccines. However, studies have shown that CALRMUT-specific T cells are rare in CALRMUT MPN patients, but the underlying reasons for this phenomenon are unknown.MethodsIn this study, we examine class-I major histocompatibility complex (MHC-I) allele frequency in CALRMUT MPN patients from two independent cohorts and observed that MHC-I alleles that present CALRMUT neoepitopes with high affinity are under-represented in CALRMUT MPN patients. We speculate that this is due to an increased chance of immune-mediated tumor rejection by individuals expressing one of these MHC-I alleles such that the disease never clinically manifests. As a consequence of this MHC-I allele restriction, we reasoned that CALRMUT MPN patients would not efficiently respond to cancer vaccines composed of the CALRMUT fragment, but could do so when immunized with a properly modified CALRMUT heteroclitic peptide vaccine approach.ResultsWe found that heteroclitic CALRMUT peptides specifically designed for CALRMUT MPN patient MHC-I alleles efficiently elicited a cross-reactive CD8+ T cell response in human PBMC samples otherwise unable to respond to the matched weakly immunogenic CALRMUT native peptides. We also modeled this effect in mice and observed that C57BL/6J mice, which are unable to mount an immune response to the human CALRMUT fragment, can mount a cross-reactive CD8+ T cell response against a CALRMUT-derived peptide upon heteroclitic peptide immunization and this was further amplified by combining the heteroclitic peptide vaccine with blockade of the immune checkpoint molecule PD-1.ConclusionsTogether, our data underscore the therapeutic potential of heteroclitic peptide-based cancer vaccines in CALRMUT MPN patients.Ethics ApprovalApproval was obtained for the use of patient-derived specimens and access to clinical data extracted from patient charts by the Institutional Review Boards at Memorial Sloan Kettering Cancer Center, the Dana-Farber Cancer Institute and the Massachusetts General Hospital, as well as by the Danish Regional Science Ethics Committee. Mouse experiments were performed in accordance with institutional guidelines under a protocol approved by the Memorial Sloan-Kettering Cancer Center Institutional Animal Care and Use Committee.