Dissemin is shutting down on January 1st, 2025

Published in

BMJ Publishing Group, Journal for ImmunoTherapy of Cancer, Suppl 3(8), p. A81-A82, 2020

DOI: 10.1136/jitc-2020-sitc2020.0075

Links

Tools

Export citation

Search in Google Scholar

75 Generalizability of potential biomarkers of response to CTLA-4 and PD-1 blockade therapy in cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

BackgroundMultiple genomics-based biomarkers of response to immune checkpoint inhibition have been reported or proposed, including tumor mutation/neoantigen frequency, PD-L1 expression, T cell receptor repertoire clonality, interferon gene signature expression, HLA expression, and others.1 Although genomics associations of response have been reported, the primary studies have used a variety of data generation and processing techniques. There is a need for data harmonization and assessment of generalizability of potential biomarkers across multiple datasets.MethodsWe acquired patient-level RNA sequencing FASTQ data files from 10 data sets reported in seven pan-cancer PD-1 and CTLA-4 immune checkpoint inhibition trials with matched clinical annotations.2–7 We applied a common bioinformatics workflow for quality control, mapping to reference (STAR), generating gene expression matrices (SALMON), T cell receptor repertoire inference (MiXCR), extraction of immune gene signatures and immune subtypes,8 and differential gene expression analysis (DESeq2). We analyzed i) immunogenomics features proposed as biomarkers, and ii) gene expression signatures built from each trial for association with overall survival across the set of trials using univariable Cox proportional hazards regression. In all, we assessed 9 total immunogenomics features/signatures. P-values were adjusted for multiple testing using the Benjamini-Hochberg method.ResultsOf the 9 immunogenomics features assessed, cytolytic activity score and expression of the Follicular Dendritic Cell Secreted Protein gene (FDCSP) were associated with survival in two of seven studies, respectively (adjusted p < 0.05) (figure 1). No proposed biomarkers were significantly associated with survival in more than two studies. The sets of genes significantly associated with clinical benefit across the studies were highly disjoint, with only three genes significant in three studies and thirteen genes significant in two studies (figure 2). No genes were significantly associated with clinical benefit in more than three of seven studies.Abstract 75 Figure 1Association of immunogenomics features and proposed biomarkers with survival in 10 publicly available datasets from 7 clinical trials with immune checkpoint blockade. Nine immunogenomics features were tested in 10 publicly available RNAseq data sets from 7 published clinical trials with immune checkpoint blockade for their correlation with outcome. SKCM, skin cutaneous melanoma; BLCA, bladder cancer; Kidney, kidney cancer; Ureter, ureteral cancer; GBM, glioblastomaAbstract 75 Figure 2Association of gene expression of single genes with survival in 10 publicly available datasets from 7 clinical trials with immune checkpoint inhibitorsConclusionsNo proposed biomarkers were highly generalizable across studies. We expect that integrated modeling incorporating multiple immunogenomics features will be required to build a robust and generalizable biomarker for ICI response. Further work is needed to analyze determinants of response and clinical benefit.AcknowledgementsWe would like to thank SITC for funding for this work as part of the Sparkathon TimIOS collaborative project.ReferencesZappasodi R, Wolchok JD, Merghoub T. Strategies for Predicting Response to Checkpoint Inhibitors. Curr Hematol Malig Rep 2018;13(5):383–95.Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, Zimmer L, Gutzmer R, Satzger I, Loquai C, Grabbe S, Vokes N, Margolis CA, Conway J, He MX, Elmarakeby H, Dietlein F, Miao D, Tracy A, Gogas H, Goldinger SM, Utikal J, Blank CU, Rauschenberg R, von Bubnoff D, Krackhardt A, Weide B, Haferkamp S, Kiecker F, Izar B, Garraway L, Regev A, Flaherty K, Paschen A, Van Allen EM, Schadendorf D. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med 2019;25(12):1916–27.Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, Madore J, Lim SY, Velickovic R, Wongchenko M, Yan Y, Lo S, Carlino MS, Guminski A, Saw RPM, Pang A, McGuire HM, Palendira U, Thompson JF, Rizos H, Silva IPD, Batten M, Scolyer RA, Long GV, Wilmott JS. distinct immune cell populations define response to anti-pd-1 monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy. Cancer Cell 2019;35(2):238–55 e6.Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, Kawaguchi ES, Du L, Li G, Yong WH, Gaffey SC, Cohen AL, Mellinghoff IK, Lee EQ, Reardon DA, O’Brien BJ, Butowski NA, Nghiemphu PL, Clarke JL, Arrillaga-Romany IC, Colman H, Kaley TJ, de Groot JF, Liau LM, Wen PY, Prins RM. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86.Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, Bhatia S, Hwu WJ, Gajewski TF, Slingluff CL, Jr., Chowell D, Kendall SM, Chang H, Shah R, Kuo F, Morris LGT, Sidhom JW, Schneck JP, Horak CE, Weinhold N, Chan TA. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 2017;171(4):934–49 e16.Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, Seja E, Lomeli S, Kong X, Kelley MC, Sosman JA, Johnson DB, Ribas A, Lo RS. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 2016;165(1):35–44.Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387(10031):1909–20.Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin CS, Cancer Genome Atlas Research N, Lazar AJ, Serody JS, Demicco EG, Disis ML, Vincent BG, Shmulevich I. The Immune Landscape of Cancer. Immunity 2018;48(4):812–30e14.