Published in

Radcliffe Medical Media, Arrhythmia and Electrophysiology Review, 3(8), p. 191-201, 2019

DOI: 10.15420/aer.2019.5.1

Links

Tools

Export citation

Search in Google Scholar

The Role of Cardiac MRI in the Management of Ventricular Arrhythmias in Ischaemic and Non-ischaemic Dilated Cardiomyopathy

Journal article published in 2019 by Tom Nelson, Pankaj Garg, Richard H. Clayton, Justin Lee ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Ventricular tachycardia (VT) and VF account for the majority of sudden cardiac deaths worldwide. Treatments for VT/VF include anti-arrhythmic drugs, ICDs and catheter ablation, but these treatments vary in effectiveness and carry substantial risks and/or expense. Current methods of selecting patients for ICD implantation are imprecise and fail to identify some at-risk patients, while leading to others being overtreated. In this article, the authors discuss the current role and future direction of cardiac MRI (CMRI) in refining diagnosis and personalising ventricular arrhythmia management. The capability of CMRI with gadolinium contrast delayed-enhancement patterns and, more recently, T1 mapping to determine the aetiology of patients presenting with heart failure is well established. Although CMRI imaging in patients with ICDs can be challenging, recent technical developments have started to overcome this. CMRI can contribute to risk stratification, with precise and reproducible assessment of ejection fraction, quantification of scar and ‘border zone’ volumes, and other indices. Detailed tissue characterisation has begun to enable creation of personalised computer models to predict an individual patient’s arrhythmia risk. When patients require VT ablation, a substrate-based approach is frequently employed as haemodynamic instability may limit electrophysiological activation mapping. Beyond accurate localisation of substrate, CMRI could be used to predict the location of re-entrant circuits within the scar to guide ablation.