Published in

De Gruyter Open, Nukleonika, 4(65), p. 223-227, 2020

DOI: 10.2478/nuka-2020-0034

Links

Tools

Export citation

Search in Google Scholar

Efficient reading of thermoluminescent dosimeter signals using semiconductor detectors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract The aim of this experimental work was to examine whether semiconductor photodetectors may be applied for the efficient reading of thermoluminescent dosimeter (TLD) signals. For this purpose, a series of experiments have been performed at the Department of Physics, Warsaw University of Technology, in cooperation with the Central Laboratory for Radiological Protection (CLOR). Specifically, the measurement system proposed here has been designed to detect a signal from TLDs that use a semiconductor detector operating in conditions analogous to those met when using commercial devices equipped with a classic photomultiplier. For the experimental tests, the TLDs were irradiated with a beam of 137Cs radiation in the accredited Laboratory for Calibration of Dosimetric and Radon Instruments. Eventually, a comparison of the results obtained with a semiconductor detector (ID120) and a commercial TLD reader with a photomultiplier tube (RADOS) were made.