Published in

Nature Research, npj Schizophrenia, 1(6), 2020

DOI: 10.1038/s41537-020-00119-y

Links

Tools

Export citation

Search in Google Scholar

Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractRecently, we developed a machine-learning algorithm “EMPaSchiz” that learns, from a training set of schizophrenia patients and healthy individuals, a model that predicts if a novel individual has schizophrenia, based on features extracted from his/her resting-state functional magnetic resonance imaging. In this study, we apply this learned model to first-degree relatives of schizophrenia patients, who were found to not have active psychosis or schizophrenia. We observe that the participants that this model classified as schizophrenia patients had significantly higher “schizotypal personality scores” than those who were not. Further, the “EMPaSchiz probability score” for schizophrenia status was significantly correlated with schizotypal personality score. This demonstrates the potential of machine-learned diagnostic models to predict state-independent vulnerability, even when symptoms do not meet the full criteria for clinical diagnosis.