Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 21(20), p. 12983-12993, 2020

DOI: 10.5194/acp-20-12983-2020

Links

Tools

Export citation

Search in Google Scholar

Kinetics of dimethyl sulfide (DMS) reactions with isoprene-derived Criegee intermediates studied with direct UV absorption

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Criegee intermediates (CIs) are formed in the ozonolysis of unsaturated hydrocarbons and play a role in atmospheric chemistry as a non-photolytic OH source or a strong oxidant. Using a relative rate method in an ozonolysis experiment, Newland et al. (2015) reported high reactivity of isoprene-derived Criegee intermediates towards dimethyl sulfide (DMS) relative to that towards SO2 with the ratio of the rate coefficients kDMS+CI/kSO2+CI = 3.5 ± 1.8. Here we reinvestigated the kinetics of DMS reactions with two major Criegee intermediates formed in isoprene ozonolysis, CH2OO, and methyl vinyl ketone oxide (MVKO). The individual CI was prepared following the reported photolytic method with suitable (diiodo) precursors in the presence of O2. The concentration of CH2OO or MVKO was monitored directly in real time through their intense UV–visible absorption. Our results indicate the reactions of DMS with CH2OO and MVKO are both very slow; the upper limits of the rate coefficients are 4 orders of magnitude smaller than the rate coefficient reported by Newland et al. (2015) These results suggest that the ozonolysis experiment could be complicated such that interpretation should be careful and these CIs would not oxidize atmospheric DMS at any substantial level.