Published in

Bentham Science Publishers, Current Organic Chemistry, 24(24), p. 2865-2901, 2020

DOI: 10.2174/1385272824999201105160034

Links

Tools

Export citation

Search in Google Scholar

Synthetic Studies towards Fungal glycosides: An Overview

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fungi have provided intriguing chemical diversity and have additionally proven to be a tremendous source for a great variety of therapeutic molecules. Various fungal glycosides have been reported from fungi and the majority of these metabolites possess cytotoxic and antimicrobial effects. Although natural products are obtained in most cases in small amounts from the specific natural source, total syntheses of these valuable commodities remain one of the most important ways of obtaining them on a large scale for more detailed and comprehensive biological studies. In addition, the total synthesis of secondary metabolites is a useful tool, not only for the disclosure of novel complex pharmacologically active molecules but also for the establishment of cutting-edge methodologies in synthetic chemistry. Numerous fungal glycosides have been synthesized in the last four decades regarding the following natural product classes viz., tetramic acid glycosides (epicoccamides A and D), polyketide glycosides (TMC-151C), 2-pyrone glycosides (epipyrone A), diterpene glycosides (sordarin), depside glycosides (CRM646-A and –B, KS-501 and KS- 502), caloporosides (caloporoside A), glycolipids (emmyguyacins A and B, acremomannolipin A), and cerebrosides (cerebroside B, Asperamide B, phalluside-1, Sch II). The current literature review about fungal glycoside synthetic studies is, therefore, of interest for a wide range of scientists and researchers in the field of organic, natural product, and medicinal chemists as it outlines key strategies of fungal glycosides and, in particular, glycosylation, the known biological and pharmacological effects of these natural compounds have afforded a new dimension of exposure.