Published in

MDPI, Cancers, 11(12), p. 3273, 2020

DOI: 10.3390/cancers12113273

Links

Tools

Export citation

Search in Google Scholar

Pharmacotranscriptomic Analysis Reveals Novel Drugs and Gene Networks Regulating Ferroptosis in Cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

(1) Background: Ferroptosis is an apoptosis-independent cell death program implicated in many diseases including cancer. Emerging evidence suggests ferroptosis as a promising avenue for cancer therapy, but the paucity of mechanistic understanding of ferroptosis regulation and lack of biomarkers for sensitivity to ferroptosis inducers have significantly hampered the utility of ferroptosis-based therapy. (2) Methods: We performed integrated dataset analysis by correlating the sensitivity of small-molecule compounds (n = 481) against the transcriptomes of solid cancer cell lines (n = 659) to identify drug candidates with the potential to induce ferroptosis. Generalizable gene signatures of ferroptosis sensitivity and resistance are defined by interrogating drug effects of ferroptosis inducers (n = 7) with transcriptomic data of pan-solid cancer cells. (3) Results: We report, for the first time, the comprehensive identification of drug compounds that induce ferroptosis and the delineation of generalizable gene signatures of pro- and anti-ferroptosis in pan-cancer. We further reveal that small cell lung cancer (SCLC) and isocitrate dehydrogenase (IDH1/2)-mutant brain tumors show enrichment of pro-ferroptosis gene signature, suggesting a unique vulnerability of SCLC and IDH-mutant tumors to ferroptosis inducers. Finally, we demonstrate that targeting class I histone deacetylase (HDAC) significantly enhances ferroptotic cell death caused by Erastin, an ferroptosis inducer, in lung cancer cells, revealing a previously underappreciated role for HDAC in ferroptosis regulation. (4) Conclusions: Our work reveals novel drug compounds and gene networks that regulate ferroptosis in cancer, which sheds light on the mechanisms of ferroptosis and may facilitate biomarker-guided stratification for ferroptosis-based therapy.