Dissemin is shutting down on January 1st, 2025

Published in

F1000Research, Wellcome Open Research, (5), p. 266, 2020

DOI: 10.12688/wellcomeopenres.16387.1

Links

Tools

Export citation

Search in Google Scholar

A rapid review and meta-analysis of the asymptomatic proportion of PCR-confirmed SARS-CoV-2 infections in community settings

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: Cross-sectional studies indicate that up to 80% of active SARS-CoV-2 infections may be asymptomatic. However, accurate estimates of the asymptomatic proportion require systematic detection and follow-up to differentiate between truly asymptomatic and pre-symptomatic cases. We conducted a rapid review and meta-analysis of the asymptomatic proportion of PCR-confirmed SARS-CoV-2 infections based on methodologically appropriate studies in community settings. Methods: We searched Medline and EMBASE for peer-reviewed articles, and BioRxiv and MedRxiv for pre-prints published before 25/08/2020. We included studies based in community settings that involved systematic PCR testing on participants and follow-up symptom monitoring regardless of symptom status. We extracted data on study characteristics, frequencies of PCR-confirmed infections by symptom status, and (if available) cycle threshold/genome copy number values and/or duration of viral shedding by symptom status, and age of asymptomatic versus (pre)symptomatic cases. We computed estimates of the asymptomatic proportion and 95% confidence intervals for each study and overall using random effect meta-analysis. Results: We screened 1138 studies and included 21. The pooled asymptomatic proportion of SARS-CoV-2 infections was 23% (95% CI 16%-30%). When stratified by testing context, the asymptomatic proportion ranged from 6% (95% CI 0-17%) for household contacts to 47% (95% CI 21-75%) for non-outbreak point prevalence surveys with follow-up symptom monitoring. Estimates of viral load and duration of viral shedding appeared to be similar for asymptomatic and symptomatic cases based on available data, though detailed reporting of viral load and natural history of viral shedding by symptom status were limited. Evidence into the relationship between age and symptom status was inconclusive. Conclusion: Asymptomatic viral shedding comprises a substantial minority of SARS-CoV-2 infections when estimated using methodologically appropriate studies. Further investigation into variation in the asymptomatic proportion by testing context, the degree and duration of infectiousness for asymptomatic infections, and demographic predictors of symptom status are warranted.