Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Remote Sensing, 21(12), p. 3620, 2020

DOI: 10.3390/rs12213620

Links

Tools

Export citation

Search in Google Scholar

Implementation of Artificial Intelligence Based Ensemble Models for Gully Erosion Susceptibility Assessment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Rarh Bengal region in West Bengal, particularly the eastern fringe area of the Chotanagpur plateau, is highly prone to water-induced gully erosion. In this study, we analyzed the spatial patterns of a potential gully erosion in the Gandheswari watershed. This area is highly affected by monsoon rainfall and ongoing land-use changes. This combination causes intensive gully erosion and land degradation. Therefore, we developed gully erosion susceptibility maps (GESMs) using the machine learning (ML) algorithms boosted regression tree (BRT), Bayesian additive regression tree (BART), support vector regression (SVR), and the ensemble of the SVR-Bee algorithm. The gully erosion inventory maps are based on a total of 178 gully head-cutting points, taken as the dependent factor, and gully erosion conditioning factors, which serve as the independent factors. We validated the ML model results using the area under the curve (AUC), accuracy (ACC), true skill statistic (TSS), and Kappa coefficient index. The AUC result of the BRT, BART, SVR, and SVR-Bee models are 0.895, 0.902, 0.927, and 0.960, respectively, which show very good GESM accuracies. The ensemble model provides more accurate prediction results than any single ML model used in this study.