Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Clinical Cancer Research, 2(27), p. 522-531, 2021

DOI: 10.1158/1078-0432.ccr-20-1900

Links

Tools

Export citation

Search in Google Scholar

Uncovering Clinically Relevant Gene Fusions with Integrated Genomic and Transcriptomic Profiling of Metastatic Cancers

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractPurpose:Gene fusions are important oncogenic drivers and many are actionable. Whole-genome and transcriptome (WGS and RNA-seq, respectively) sequencing can discover novel clinically relevant fusions.Experimental Design:Using WGS and RNA-seq, we reviewed the prevalence of fusions in a cohort of 570 patients with cancer, and compared prevalence to that predicted with commercially available panels. Fusions were annotated using a consensus variant calling pipeline (MAVIS) and required that a contig of the breakpoint could be constructed and supported from ≥2 structural variant detection approaches.Results:In 570 patients with advanced cancer, MAVIS identified 81 recurrent fusions by WGS and 111 by RNA-seq, of which 18 fusions by WGS and 19 by RNA-seq were noted in at least 3 separate patients. The most common fusions were EML4-ALK in thoracic malignancies (9/69, 13%), and CMTM8-CMTM7 in colorectal cancer (4/73, 5.5%). Combined genomic and transcriptomic analysis identified novel fusion partners for clinically relevant genes, such as NTRK2 (novel partners: SHC3, DAPK1), and NTRK3 (novel partners: POLG, PIBF1).Conclusions:Utilizing WGS/RNA-seq facilitates identification of novel fusions in clinically relevant genes, and detected a greater proportion than commercially available panels are expected to find. A significant benefit of WGS and RNA-seq is the innate ability to retrospectively identify variants that becomes clinically relevant over time, without the need for additional testing, which is not possible with panel-based approaches.