Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Scientific Reports, 1(10), 2020

DOI: 10.1038/s41598-020-76018-0

Links

Tools

Export citation

Search in Google Scholar

Spatial distribution of stygobitic crustacean harpacticoids at the boundaries of groundwater habitat types in Europe

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe distribution patterns of stygobitic crustacean harpacticoids at the boundaries of three different groundwater habitat types in Europe were analysed through a GIS proximity analysis and fitted to exponential models. The results showed that the highest frequency of occurrences was recorded in aquifers in consolidated rocks, followed by the aquifers in unconsolidated sediments and, finally, by the practically non-aquiferous rocks. The majority of the stygobitic harpacticoid species were not able to disperse across the boundaries between two adjacent habitats, with 66% of the species occurring in a single habitat type. The species were not evenly distributed, and 35–69% of them occurred from 2 to 6 km to the boundaries, depending on the adjacent habitat types. The distribution patterns were shaped by features extrinsic to the species, such as the hydrogeological properties of the aquifers, and by species’ intrinsic characteristics such as the preference for a given habitat type and dispersal abilities. Most boundaries between adjacent habitat types resulted to be “breaches”, that is transmissive borders for stygobitic harpacticoids, while others were “impermeable walls”, that is absorptive borders. Our results suggest that conservation measures of groundwater harpacticoids should consider how species are distributed within the different groundwater habitat types and at their boundaries to ensure the preservation of species metapopulations within habitat patches and beyond them.