Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Journal of Physics D: Applied Physics, 8(54), p. 085303, 2020

DOI: 10.1088/1361-6463/abc6d6

Links

Tools

Export citation

Search in Google Scholar

Nitrogen-doped Carbon coated Nanodiamonds for Electrocatalytic Applications

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Nitrogen-doped carbon hybridized nanodiamond (N-doped C@ND) materials have been developed and used as an electrocatalytic for oxygen reduction reactions (ORRs). The polymerized ionic liquids are employed to modify NDs and then subjected to thermal annealing at 600 °C, resulting in a high concentration of N-doped (9.33 at.%) carbon frameworks attached on the ND surface. This N-doped C@ND material provides a highly active mesoporous structure (4 nm pore) with a high surface area (366 m2 g−1) and allows for enhancement of catalytic performance compared to pure NDs. The N-doped C layers altered the electroneutrality of NDs, creating favourable charged sites for oxygen adsorption, thus weakening the O–O bond strength to facilitate ORR activity. Having a predominant four-electron transfer pathway with a total electron transfer number of 3.44–3.88 in the potential region of 0.1–0.8 VRHF, the N-doped C@ND-based catalyst materials performed well as a catalyst for the ORR in the alkaline medium. This affordable material and simple process will find potential application in clean energy generation and storage, durable fuel cells and metal–air batteries.