Published in

Nature Research, Nature Communications, 1(11), 2020

DOI: 10.1038/s41467-020-19208-8

Links

Tools

Export citation

Search in Google Scholar

A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractCarbon cycle feedbacks represent large uncertainties in climate change projections, and the response of soil carbon to climate change contributes the greatest uncertainty to this. Future changes in soil carbon depend on changes in litter and root inputs from plants and especially on reductions in the turnover time of soil carbon (τs) with warming. An approximation to the latter term for the top one metre of soil (ΔCs,τ) can be diagnosed from projections made with the CMIP6 and CMIP5 Earth System Models (ESMs), and is found to span a large range even at 2 °C of global warming (−196 ± 117 PgC). Here, we present a constraint on ΔCs,τ, which makes use of current heterotrophic respiration and the spatial variability of τs inferred from observations. This spatial emergent constraint allows us to halve the uncertainty in ΔCs,τ at 2 °C to −232 ± 52 PgC.