Full text: Download
Carbon nanodots (CDs) have recently attracted attention in the field of nanomedicine because of the biocompatibility, cost-effective nature, high specific surface, good near infrared (NIR) photothermal conversion into heat and tunable fluorescence properties, which have paved the way toward incorporating use of CDs into innovative anticancer theranostic platforms. However, a reliable synthesis of CDs with established and controlled physiochemical proprieties is precluded owing to the lack of full manipulation of thermodynamic parameters during the synthesis, thus limiting their use in real world medical applications. Herein, we developed a robust solvothermal protocol which allow fine controlling of temperature and pressure in order to obtain CDs with tunable properties. We obtained different CDs by modulating the operating pressure (from 8 to 18.5 bar) during the solvothermal decomposition of urea and citric acid in N,N-dimethylformamide at fixed composition. Atomic force microscopy (AFM), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis) and fluorescence spectroscopy were used to assess the role of pressure in influencing size, optical and surface properties of the obtained CDs. While preliminary biological and anticancer performance of CDs was established on the MDA-MB-231 cell line, used as triple negative breast cancer model. Our results indicate that pressure impinge on the formation of carbon nanoparticles under solvothermal conditions and impart desired optical, size distribution, surface functionalization and anticancer properties in a facile way. However, we have highlighted that a strategic surface engineering of these CDs is needed to limit the adsorption of corona proteins and also to increase the average surface diameter, avoiding a rapid renal clearance and improving their therapeutic efficacy in vivo.