Published in

MDPI, Applied Sciences, 21(10), p. 7631, 2020

DOI: 10.3390/app10217631

Links

Tools

Export citation

Search in Google Scholar

Ray-Tracing-Based Numerical Assessment of the Spatiotemporal Duty Cycle of 5G Massive MIMO in an Outdoor Urban Environment

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In the near future, wireless coverage will be provided by the base stations equipped with dynamically-controlled massive phased antenna arrays that direct the transmission towards the user. This contribution describes a computational method to estimate realistic maximum power levels produced by such base stations, in terms of the time-averaged normalized antenna array gain. The Ray-Tracing method is used to simulate the electromagnetic field (EMF) propagation in an urban outdoor macro-cell environment model. The model geometry entities are generated stochastically, which allowed generalization of the results through statistical analysis. Multiple modes of the base station operation are compared: from LTE multi-user codebook beamforming to the more advanced Maximum Ratio and Zero-Forcing precoding schemes foreseen to be implemented in the massive Multiple-Input Multiple-Output (MIMO) communication protocols. The influence of the antenna array size, from 4 up to 100 elements, in a square planar arrangement is studied. For a 64-element array, the 95th percentile of the maximum time-averaged array gain amounts to around 20% of the theoretical maximum, using the Maximum Ratio precoding with 5 simultaneously connected users, assuming a 10 s connection duration per user. Connection between the average array gain and actual EMF levels in the environment is drawn and its implications on the human exposure in the next generation networks are discussed.