Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Applied Sciences, 21(10), p. 7623, 2020

DOI: 10.3390/app10217623

Links

Tools

Export citation

Search in Google Scholar

Biological Maturity Status, Anthropometric Percentiles, and Core Flexion to Extension Strength Ratio as Possible Traumatic and Overuse Injury Risk Factors in Youth Alpine Ski Racers: A Four-Year Prospective Study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The aim of the present study was to investigate prospectively the role of biological maturity status, anthropometric percentiles, and core flexion to extension strength ratios in the context of traumatic and overuse injury risk identification in youth ski racing. In this study, 72 elite youth ski racers (45 males, 27 females) were prospectively observed from the age of 10 to 14 years. Anthropometric parameters, biological maturity status, and core flexion to extension strength ratios were assessed twice per year. Type and severity of traumatic and overuse injuries were prospectively recorded during the 4 years. Generalized estimating equations were used to model the binary outcome (0: no injury; 1: ≥1 injury). Factors tested on association with injury risk were sex, relative age quarter, age, maturity group, puberty status, core flexion to extension strength ratio, height percentile group, and weight percentile group. In total, 104 traumatic injuries and 39 overuse injuries were recorded. Age (odds ratio (OR) = 3.36) and weight percentile group (OR = 0.38) were significant risk factors for traumatic injuries (tendency: pubertal status). No significant risk factor for overuse injuries was identified (tendency: maturity group, puberty status, height percentile group). Future studies should focus on identifying risk factors for overuse injuries; growth rates might be of importance.