Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, communications materials, 1(1), 2020

DOI: 10.1038/s43246-020-00078-y

Links

Tools

Export citation

Search in Google Scholar

Nacre toughening due to cooperative plastic deformation of stacks of co-oriented aragonite platelets

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractNacre’s structure-property relationships have been a source of inspiration for designing advanced functional materials with both high strength and toughness. These outstanding mechanical properties have been mostly attributed to the interplay between aragonite platelets and organic matrices in the typical brick-and-mortar structure. Here, we show that crystallographically co-oriented stacks of aragonite platelets, in both columnar and sheet nacre, define another hierarchical level that contributes to the toughening of nacre. By correlating piezo-Raman and micro-indentation results, we quantify the residual strain energy associated with strain hardening capacity. Our findings suggest that the aragonite stacks, with characteristic dimensions of around 20 µm, effectively store energy through cooperative plastic deformation. The existence of a larger length scale beyond the brick-and-mortar structure offers an opportunity for a more efficient implementation of biomimetic design.