Published in

Oxford University Press, EP Europace, 1(23), p. 139-146, 2020

DOI: 10.1093/europace/euaa243

Links

Tools

Export citation

Search in Google Scholar

In vivo analysis of the origin and characteristics of gaseous microemboli during catheter-mediated irreversible electroporation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Aims Irreversible electroporation (IRE) ablation is a non-thermal ablation method based on the application of direct current between a multi-electrode catheter and skin electrode. The delivery of current through blood leads to electrolysis. Some studies suggest that gaseous (micro)emboli might be associated with myocardial damage and/or (a)symptomatic cerebral ischaemic events. The aim of this study was to compare the amount of gas generated during IRE ablation and during radiofrequency (RF) ablation. Methods and results In six 60–75 kg pigs, an extracorporeal femoral shunt was outfitted with a bubble-counter to detect the size and total volume of gas bubbles. Anodal and cathodal 200 J IRE applications were delivered in the left atrium (LA) using a 14-electrode circular catheter. The 30 and 60 s 40 W RF point-by-point ablations were performed. Using transoesophageal echocardiography (TOE), gas formation was visualized. Average gas volumes were 0.6 ± 0.6 and 56.9 ± 19.1 μL (P < 0.01) for each anodal and cathodal IRE application, respectively. Also, qualitative TOE imaging showed significantly less LA bubble contrast with anodal than with cathodal applications. Radiofrequency ablations produced 1.7 ± 2.9 and 6.7 ± 7.4 μL of gas, for 30 and 60 s ablation time, respectively. Conclusion Anodal IRE applications result in significantly less gas formation than both cathodal IRE applications and RF applications. This finding is supported by TOE observations.