Published in

MDPI, Journal of Fungi, 4(6), p. 250, 2020

DOI: 10.3390/jof6040250

Links

Tools

Export citation

Search in Google Scholar

Protective Efficacy of Lectin-Fc(IgG) Fusion Proteins In Vitro and in a Pulmonary Aspergillosis In Vivo Model

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aspergillosis cases by Aspergillus fumigatus have increased, along with fungal resistance to antifungals, urging the development of new therapies. Passive immunization targeting common fungal antigens, such as chitin and β-glucans, are promising and would eliminate the need of species-level diagnosis, thereby expediting the therapeutic intervention. However, these polysaccharides are poorly immunogenic. To overcome this drawback, we developed the lectin-Fc(IgG) fusion proteins, Dectin1-Fc(IgG2a), Dectin1-Fc(IgG2b) and wheat germ agglutinin (WGA)-Fc(IgG2a), based on their affinity to β-1,3-glucan and chitooligomers, respectively. The WGA-Fc(IgG2a) previously demonstrated antifungal activity against Histoplasma capsulatum, Cryptococcus neoformans and Candida albicans. In the present work, we evaluated the antifungal properties of these lectin-Fc(s) against A. fumigatus. Lectin-Fc(IgG)(s) bound in a dose-dependent manner to germinating conidia and this binding increased upon conidia germination. Both lectin-Fc(IgG)(s) displayed in vitro antifungal effects, such as inhibition of conidia germination, a reduced length of germ tubes and a diminished biofilm formation. Lectin-Fc(IgG)(s) also enhanced complement deposition on conidia and macrophage effector functions, such as increased phagocytosis and killing of fungi. Finally, administration of the Dectin-1-Fc(IgG2b) and WGA-Fc(IgG2a) protected mice infected with A. fumigatus, with a 20% survival and a doubled life-span of the infected mice, which was correlated to a fungal burden reduction in lungs and brains of treated animals. These results confirm the potential of lectin-Fc(IgGs)(s) as a broad-spectrum antifungal therapeutic.