Published in

Elsevier, Journal of Biological Chemistry, 36(281), p. 26188-26195, 2006

DOI: 10.1074/jbc.m604516200

Links

Tools

Export citation

Search in Google Scholar

Toll-like receptor-dependent and -independent viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1

Journal article published in 2006 by Eliana M. Coccia, Martina Severa ORCID, Katherine A. Fitzgerald
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Here we identify Viperin as a highly inducible gene in response to lipopolysaccharide (LPS), double-stranded RNA (poly(I-C)) or Sendai virus (SV). The only known function of Viperin relates to its ability to inhibit human Cytomegalovirus replication. Very little data are available on the regulation of this gene. In silico analysis of the promoter identified two interferon (IFN)-stimulated response elements (ISRE), which in other genes bind IRF3 or the IFN-stimulated gene factor-3 (ISGF3) complex. LPS and poly(I-C) induce very high levels of Viperin in wild type cells but not in cells deficient in TRIF, TBK1, IRF3, or the type I IFNalpha/betaR. SV-induced Viperin gene expression was mediated independently of Toll-like receptor (TLR) signaling by retinoic acid-inducible gene (RIG-I) and the downstream adapter, mitochondrial anti-viral signaling (MAVS). Virus-induced Viperin expression was not attenuated in macrophages deficient in either TBK1 or IKKepsilon alone. Moreover, IRF3-deficient, but not IFNalpha/betaR deficient, macrophages still induced Viperin in response to SV. Promoter reporter studies combined with DNA immunoprecipitation assays identified the ISGF3 complex as the key regulator of Viperin gene expression. Moreover, positive regulatory domain I-binding factor 1 (PRDI-BF1, also called BLIMP1) binds the ISRE sites and competes with ISGF3 binding in a virus inducible manner to inhibit Viperin transcription. Collectively, these studies identify Viperin as a tightly regulated ISGF3 target gene, which is counter-regulated by PRDI-BF1.