Published in

MDPI, Agriculture, 11(10), p. 501, 2020

DOI: 10.3390/agriculture10110501

Links

Tools

Export citation

Search in Google Scholar

Sustainable Biomass Pellets Production Using Vineyard Wastes

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Vineyards waste has a great importance as biomass, a renewable source of energy. In this paper eight vine shoot varieties were used for the production of pellets by densification of feedstock materials with four ranges of moisture contents (6–8%, 8–10%, 10–12% and 12–15%). A moisture content of 10% gave durability higher than 97.5% and a calorific value greater than 17 MJ kg−1 and the small durability was obtained for 6–8% moisture. The study shows the significant influence of water during densification. The physicochemical and energetic properties of pellets were evaluated in accordance with ISO 17225-6 (2014). The obtained pellets were also structurally characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). SEM analysis showed the formation of carbon microsphere after pelletization, due to the increase of bulk density and durability of pellets. Also, XRD analysis revealed the crystallinity of cellulose, while TGA analysis showed a total decomposition of pellets. The obtained pellets were burned in a domestic boiler and the flue gases were measured. The preliminary results showed that the vineyard residues had higher emissions, but below the admitted limits, with the exception of carbon monoxide content. The obtained results suggested that the biomass wastes can be used for the production of pellets, aiming to enhance the research for the manufacturing of these sustainable biofuels with some remarks regarding risk of corrosion and slag formation during prolonged use.