Published in

Oxford University Press, Carcinogenesis: Integrative Cancer Research, 10(33), p. 1976-1984, 2012

DOI: 10.1093/carcin/bgs228

Links

Tools

Export citation

Search in Google Scholar

Increased levels of the HER1 adaptor protein Ruk l /CIN85 contribute to breast cancer malignancy

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The adaptor protein regulator for ubiquitous kinase/c-Cbl-interacting protein of 85kDa (Ruk/CIN85) was found to modulate HER1/EGFR signaling and processes like cell adhesion and apoptosis. Although these features imply a role in carcinogenesis, it is so far unknown how and by which molecular mechanisms Ruk/CIN85 could affect a certain tumor phenotype. By analyzing samples from breast cancer patients, we found high levels of Ruk(l)/CIN85 especially in lymph node metastases from patients with invasive breast adenocarcinomas, suggesting that Ruk(l)/CIN85 contributes to malignancy. Expression of Ruk(l)/CIN85 in weakly invasive breast adenocarcinoma cells deficient of Ruk(l)/CIN85 indeed converted them into more malignant cells. In particular, Ruk(l)/CIN85 reduced the growth rate, decreased cell adhesion, enhanced anchorage-independent growth, increased motility in both transwell migration and wound healing assays as well as affected the response to epidermal growth factor. Thereby, Ruk(l)/CIN85 led to a more rapid and prolonged epidermal growth factor-dependent activation of Src, Akt and ERK1/2 and treatment with the Src inhibitor PP2 and the PI3K inhibitor LY294002 abolished the Ruk(l)/CIN85-dependent changes in cell motility. Together, this study indicates that high levels of Ruk(l)/CIN85 contribute to the conversion of breast adenocarcinoma cells into a more malignant phenotype via modulation of the Src/Akt pathway.