Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Molecules, 21(25), p. 4911, 2020

DOI: 10.3390/molecules25214911

Links

Tools

Export citation

Search in Google Scholar

Application of NF Polymeric Membranes for Removal of Multicomponent Heat-Stable Salts (HSS) Ions from Methyl Diethanolamine (MDEA) Solutions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This study presents an efficient and scalable process for removing the heat-stable salts (HSS) ions from amine solution while recovering methyl diethanolamine (MDEA) solution for its reuse in gas sweetening plants. The presence of HSS in the amine solution causes the loss of solvent capacity, foaming, fouling, and corrosion in gas sweetening units so their removal is crucial for a more well-performing process. Furthermore, the recovery of the amine solution can make the sweetening step a more sustainable process. In this study, for the first time, the removal of a multicomponent mixture of HSS from MDEA solution was investigated via a nanofiltration process using flat-sheet NF-3 membranes. The impact of operating parameters on salts and amine rejection, and flux, including the operating pressure, HSS ions concentration, and MDEA concentration in the feed solution was investigated. Results based on the nanofiltration of an amine stream with the same composition (45 wt.% MDEA solution) as that circulating in a local gas refinery (Ilam Gas refinery), demonstrated a removal efficiency of HSS ions in the range from 75 to 80% and a MDEA rejection of 0% indicating the possibility of reusing this stream in the new step of gas sweetening.