Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 2(499), p. 2162-2172, 2020

DOI: 10.1093/mnras/staa2865

Links

Tools

Export citation

Search in Google Scholar

Radiolysis of NH3:CO ice mixtures – implications for Solar system and interstellar ices

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Experimental results on the processing of NH3:CO ice mixtures of astrophysical relevance by energetic (538 MeV 64Ni24+) projectiles are presented. NH3 and CO are two molecules relatively common in interstellar medium and Solar system; they may be precursors of amino acids. 64Ni ions may be considered as representative of heavy cosmic ray analogues. Laboratory data were collected using mid-infrared Fourier transform spectroscopy and revealed the formation of ammonium cation (NH$_4^+$), cyanate (OCN−), molecular nitrogen (N2), and CO2. Tentative assignments of carbamic acid (NH2COOH), formate ion (HCOO−), zwitterionic glycine (NH$_3^+$CH2COO−), and ammonium carbamate (NH$_4^+$NH2COO−) are proposed. Despite the confirmation on the synthesis of several complex species bearing C, H, O, and N atoms, no N–O-bearing species was detected. Moreover, parameters relevant for computational astrophysics, such as destruction and formation cross-sections, are determined for the precursor and the main detected species. Those values scale with the electronic stopping power (Se) roughly as σ ∼ a S$_\mathrm{ e}^n$, where n ∼ 3/2. The power law is helpful for predicting the CO and NH3 dissociation and CO2 formation cross-sections for other ions and energies; these predictions allow estimating the effects of the entire cosmic ray radiation field.