Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Journal of Clinical Medicine, 11(9), p. 3387, 2020

DOI: 10.3390/jcm9113387

Links

Tools

Export citation

Search in Google Scholar

Somatic Variant Analysis Identifies Targets for Tailored Therapies in Patients with Vascular Malformations

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Vascular malformations include various disorders characterized by morphological, structural and/or functional alterations of blood and lymph vessels. Most are sporadic, due to somatic mutations. Here, we report a cohort of patients with sporadic and/or unifocal vascular malformations, in whom we carried out next generation sequencing analysis of a panel of genes associated with vascular malformations. The 115 patients analyzed were from different clinical centres. In 37 patients (32%), we found pathogenic mutations: most of these were gain–of–function mutations in PIK3CA (18%, 21/115) and TEK (13/115, 11%). We also found mutations in GNAQ, CCM2 and PTEN. Identifying pathogenic variants in patients with vascular malformations can help improve management, particularly in cases with activating mutations that cause an increase in cell proliferation. Personalized pharmacological treatment, if possible, is now considered preferable to surgery and can help prevent recurrences, i.e., long–term complications of residual malformation or regrowth of tumors. For instance, rapamycin is currently being investigated for the treatment of various vascular malformations associated with hyperactivation of the phosphoinositide 3–kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway.