Published in

Nature Research, npj Computational Materials, 1(6), 2020

DOI: 10.1038/s41524-020-00429-w

Links

Tools

Export citation

Search in Google Scholar

Machine learning property prediction for organic photovoltaic devices

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOrganic photovoltaic (OPV) materials are promising candidates for cheap, printable solar cells. However, there are a very large number of potential donors and acceptors, making selection of the best materials difficult. Here, we show that machine-learning approaches can leverage computationally expensive DFT calculations to estimate important OPV materials properties quickly and accurately. We generate quantitative relationships between simple and interpretable chemical signature and one-hot descriptors and OPV power conversion efficiency (PCE), open circuit potential (Voc), short circuit density (Jsc), highest occupied molecular orbital (HOMO) energy, lowest unoccupied molecular orbital (LUMO) energy, and the HOMO–LUMO gap. The most robust and predictive models could predict PCE (computed by DFT) with a standard error of ±0.5 for percentage PCE for both the training and test set. This model is useful for pre-screening potential donor and acceptor materials for OPV applications, accelerating design of these devices for green energy applications.